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ABSTRACT: Precisely probing heavy metal pollutants in
water warrants novel methods and materials. To this end,
functionalization of nanoparticles using biologically important
substances through a green route is a novel aspect in the
design of an optical sensor. In this article we report a green
preparative strategy for the synthesis of cysteamine stabilized
silver nanoparticles (Ag-Nps) in aqueous medium. The water-
soluble Ag-Nps are found to be highly sensitive and selective
for rapid colorimetric detection of Hg(II) ion with a limit of
detection (LOD) of 0.273 nM (55 ppt). This system also
enables us to detect Hg(II) through the naked eye with an
LOD of 2.73 nM (0.55 ppb) which is below the World Health Organization (WHO) permissible limit (10 nM or 2 ppb).
Cysteamine undergoes cooperative coordination with the mercury ion leading to spontaneous formation of a mercury−
cysteamine complex and consequently forms Ag−Hg nanoalloy, which in turn changes the surface plasmon property of Ag-Nps
to allow detection of Hg(II) ion with subnanomolar precision. Furthermore, Ag-Nps were tested for detection of Hg(II) in
different real water samples with satisfying recoveries over 96−102%.
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■ INTRODUCTION

Heavy metal ion contamination poses a severe threat to human
civilization and the environment. Mercury has been well-known
as an environmental pollutant for several decades.1 This
bioaccumulative species, considered to be a highly toxic heavy
metal element, is distributed in every aspect of environment and
biota.2−5 Mercury is highly toxic in all its oxidation states,
notwithstanding differences in solubility and possible redox
interconversion.6−9 Among them Hg(II) is one of the most
common and stable forms of mercury pollutant. Because of its
solubility in water, it provides a pathway for contaminating a large
amount of water. Once introduced into the aquatic ecosystem,
bacteria convert inorganic mercury into neurotoxic methylmer-
cury, which enters the food chain and accumulates in higher
organisms, especially in large edible fish, resulting in prenatal
brain damage, various cognitive and motion disorders, and the
most deadly minamata disease.10−13 Therefore, monitoring the
levels of potentially toxic metal Hg2+ in aquatic ecosystems
becomes important.
Escalating consciousness of the lethal effect of Hg(II) has

sparked interest in many researchers in building up tools for
detecting Hg(II) in the environment.2−4 To date, a variety of
methods14−37 are reported in the literature for the detection of
Hg(II). Although these methods provide satisfactory limits of
detection (LOD), they are sophisticated, time-consuming, high-

cost operations that require complicated, nonportable equip-
ment and are, consequently, not suitable for field monitoring.
Thus, development of a simple, rapid, highly sensitive, cost-
effective method for selective detection of Hg(II) is still a major
pursuit.
In the last few decades, noble metal nanoparticles like gold and

silver have attracted great attention because of their distinctive
property of surface plasmon resonance (SPR).38 Unlike dyes,
silver nanoparticles are quite photostable and do not undergo
rapid photobleaching, allowing these nanoparticles to be utilized
as optical probes for ultrasensitive Hg2+ detection through the
formation of amalgams.39 However, existing methods for Hg(II)
sensing require a rather complicated procedure for the synthesis
of silver nanoparticles. A more facile and economic method for
sensing Hg2+ is, therefore, desirable.
Cysteamine is an aminothiol compound used as an

inexpensive drug for the treatment of cystinosis40,41 and found
significant therapeutic effects in recent years. In this article, we
report a green, straightforward synthesis of cysteamine stabilized
silver nanoparticles in aqueous medium and its application
toward a colorimetric assay for Hg2+ ion with a detection limit
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down to 55 ppt (275 pM). This system also enables us to detect
Hg(II) through naked eye with a LOD of 2.73 nM (0.55 ppb)
which is below theWHO permissible limit (10 nM or 2 ppb). To
the best of our knowledge, cysteamine-capped Ag-Nps has not
been studied yet for colorimetric detection of Hg(II) ion in
aqueous medium.
In this simple analytical method, an aqueous solution of Hg2+

was added to an aqueous dispersion of silver nanoparticles
leading to a change in the surface property of Ag-Nps and
consequently the color of the solution changes from yellow to
colorless.

■ MATERIALS AND METHODS
Instruments. All the UV−vis measurements were carried in

Cary100-Bio spectrophotometer. For the calibration plot, optical
density (OD) was measured at 402 nm (λmax value of yellow color
Ag-Nps). Transmission electron microscopy (TEM) analysis and
Energy-dispersive X-ray spectroscopy (EDX) mapping were carried in
JEOL JEM-2100F and Oxford Extreme-Inca respectively.
Materials. Silver nitrate (AgNO3) and sodium borohydride

(NaBH4) were obtained from Avra Synthesis Private Limited.
Cysteamine hydrochloride (SH−CH2−CH2−NH2·HCl) was obtained
from SigmaAldrich and used without further purification. Milli-Q water
was used for all the experiments. Silver nanoparticles (Ag-Nps) were
synthesized by a procedure discussed below.
Synthesis of Cysteamine Stabilized Silver Nanoparticles (Ag-

Nps). A 30 mL portion of 0.2 mM sodium borohydride (NaBH4) was
taken in an Erlenmeyer flask fitted with a magnetic stir bar and placed in
an ice bath with constant stirring for 20 min. In an another flask, 20 mL
of 0.1mMAgNO3 solution was placed in an ice bath and 3mL of 0.3% of
cysteamine hydrochloride was mixed with it. Then cold NaBH4 solution
was added to it dropwise at very slow rate until the solution became vivid
yellow. The flask containing yellow Ag-Nps was removed from the ice
bath and was allowed to come at room temperature with constant
stirring. The solution was centrifuged, washed several times with MQ-
water and redispersed in MQ-water.
Characterization of Cysteamine Stabilized Silver Nano-

particles (Ag-Nps). The synthesized silver nanoparticles were
characterized by UV−vis spectroscopy, TEM, and EDX analysis. The
TEM images of colloidal Ag-Nps is displayed in Figure 1b; it reveals that
the particles are multifaceted and spherical in nature with an average size
of about 20 nm with a dynamic range of 14−26 nm (Figure 1c).

■ RESULTS AND DISCUSSION
UV−vis Spectroscopy. The colloidal Ag-Nps in water

showed a surface plasmon resonance (SPR) band with maximum
absorption at the wavelength of 402 nm and thus exhibited a vivid
yellow color (Figure 1a).
Sensing Detection of Hg2+. The sensitivity of function-

alized Ag-Nps toward Hg2+ ions in aqueous medium was
investigated. The Ag-Nps solution was diluted to an extent (4
nM) which resulted in a recognizable change in color by naked-
eye, upon minimum addition of Hg(II). This assay provides us a
detection limit of 0.55 ppb as shown in Figure 2. This LOD is
well below the permissible limit (2 ppb) in drinking water
declared by theWorldHealth Organization (WHO), rendering it
suitable for analysis of real life samples.
Use of UV−vis spectroscopy further improved the sensitivity.

As expected, functionalized Ag-Nps provided a good linear
calibration range over 55−2700 ppt (Figure 2b).
Selective Detection of Hg2+. The second essential feature

of a chemical sensor is its selectivity for the target in mixtures that
are present in natural environments and field measurements. We
therefore proceeded to determine the selectivity of Hg2+ in the
presence of thousand folds of other metal ions including Na+, K+,
Ca2+, Mg2+, Al3+, Cr2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Ba2+,

Figure 1. (a) UV−vis plot of Ag-Nps. (inset) Digital image of Ag-Nps
aqueous solution. (b) TEM image. (c) Size distribution plot. (d) High
resolution TEM image of Ag-Nps.

Figure 2. (a) UV−vis absorption spectra of Ag-Nps after the addition of
different concentration of Hg2+(0−13.6 nM). (b) Linear calibration plot
of concentration of Hg2+ vs optical density (OD) at 402 nm. (inset)
Photos for different concentration of Hg2+; from left: 0, 550, 1500, and
2700 ppt.
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Cd2+, Bi3+, Sr2+ (50 mM), and mixed metal ions (Pb2+, Mn2+,
Cu2+; with and without Hg2+). To check the versatility of the
sensing system, we perform the selective detection test with the
metals those are chemically more similar to Hg2+, such as Au3+,
As5+, and As3+. Comfortingly, a satisfactory experimental
outcome which is similar to that of other metal ions was
observed. The above-mentioned metal ions do not influence the
absorbance of silver nanocolloidal system, indicating that the
sensor displayed excellent selectivity toward Hg2+ ion. The
relative absorbance plot and the digital photograph (inset in
Figure 3), shown below, corroborate this fact.

Comparison of Other Methods for the Detection of
Hg2+ with Our Proposed Method. Our sensing system
provides ultrasensitivity in terms of naked eye detection and so
also UV−vis spectroscopy. Many methods have been developed
in last decades where mostly complex and sophisticated
techniques18−37 have been utilized to detect Hg(II) ion from
nanomolar to subnanomolar level. Our simple, green, and

economically viable technique gives the detection limit of 275
picomolar (55 ppt) which is mostly superior14−22,26−28 or at
par23−25 to those methods (Table S3, Supporting Information).

Transmission Electron Microscopy (TEM). Direct evi-
dence for Hg2+ stimulated diffusion followed by aggregation of
the Ag-Nps could be further supported by TEM analysis. The
TEM images after addition of 6.8 nM (1.36 ppb; Figure 4b) and
13.5 nM (2.7 ppb; Figure 4c) Hg2+ to the solution of Ag-Nps
clearly show the intriguing changes (Figure 4). In addition, the
EDX of selected zone during TEM analysis confirms the gradual
formation of Ag−Hg nanoalloy (Figure 4d−f).
In order to study the surface elemental composition and

atomic distribution throughout the Ag−Hg nanoalloy, a detailed
chemical analysis was carried out using EDX mapping. The Ag
and Hg signals after addition of 6.8 and 13.5 nM of Hg2+ are
represented by Figure 5a−d and e−h, respectively.
EDX mapping also indicated that the elements Ag and Hg

were uniformly distributed from the inner core to the periphery,
thus facilitating formation of nonuniform Ag−Hg nanoalloy.

Effect of pH. In order to test the sensitivity and also the
linearity of our sensing system in different pH, we performed the
detection of mercury through our sensing system at different pH.
A pH range of 6.0−8.0 appears to provide protection for the life
of freshwater fish and bottom dwelling invertebrates. In this
context, the effect of pH on the linearity and sensitivity of our
probe was studied at different pH values, ranging from 3.2 to 8.0
as shown in Figure 6. The UV-absorption values were not
affected by the solution pH value over the pH range of 3.2−8.0.
The Hg(II) sensitivity shows excellent linear calibration over the
range 55−2700 ppt in different pH values ranging from 3.2 to 8.0.

Proposed Mechanism for the Sensing Assay. On
treatment with Hg(II), thiophillic Hg2+ would lead to partial
exchange of cysteamine ligand42 from silver to mercury leaving
patches of exposed surface of silver. Then a redox reaction
involving Ag0 and Hg2+ would lead to the formation of Ag−Hg
nanoalloy (eq 1).43,44 This in turn changes the surface plasmon
property of Ag-Nps and consequently color of the solution
changes. This is the basis of this assay for Hg2+ ion in water
(Scheme 1).

+ ⇌ ++
−

+Ag Hg Ag Hg 2Agn n
2

2 (1)

Figure 3. Change in absorbance of the Ag-Nps solution in the presence
of 11 μMHg2+ and 1000 fold other metal ions (50 mM). (inset) Digital
photograph of the colorimetric response of the same.

Figure 4. TEM images and EDX analysis of Ag-Nps in the presence of (a and d) 0, (b and e) 6.8, and (c and f) 13.5 nM Hg2+ ions.
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Practical Application: Analysis of Real Water Samples.
To further ensure the potency of our sensing system, the sensor
was tentatively applied to detect Hg2+ in real samples like lake

water, tap water, and packaged drinking water, where the
concentration of other metal ions or unknown contamination are
significantly higher than that of Hg2+. Therefore, practical assay is

Figure 5. (a and e) TEM images of Ag-Nps. (b and f) Dark filled STEM images. Ag (yellow, c and g) and Hg (cyan, d and h) elemental maps of selected
area in the presence of (a−d) 6.8 and (e−h) 13.5 nM Hg2+ ions, respectively.

Figure 6. Linear calibration plot of concentration of Hg(II) vs Optical density (OD) at pH 3.2, 4.5, 6.5, and 8.0.
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an obligatory and decisive issue as well, for most of the common
sensors. Tap water (obtained from our institute), packaged
drinking water (from a commercial source, Bisleri), and a lake
water sample (collected from Mahendra Sarovar on the campus
of IACS) were filtered through Whatman-1 (90 mm) filter paper
to remove the suspended particles.
Mercury contamination in these real water matrices was found

to be undetectable. Therefore, a known concentration of
mercury (5 nM) was spiked in the real water matrices, and the
recovery of the systemwas detected to be within the range of 96−
102% (Table S3, Supporting Information). This experimental
outcome suggested that the cysteamine-capped silver nano-
particles based optical sensor has high prospective for the
detection of Hg(II) in environmental samples.

■ CONCLUSION
In this article, we have demonstrated the design of a simple, cost-
effective chemo-sensor based on label-free silver nanoparticles.
The use of cysteamine-capped silver nanoparticles offers a
convenient “mix-and-detect” approach for ultrasensitive and
rapid detection of Hg(II) ion in aqueous medium. This Hg2+

sensor can provide a LOD of 55 ppt (275 pM) Hg2+ ion with
excellent discrimination against other heavy metals. To the best
of our knowledge, this is the most sensitive optical sensor for
visual detection (LOD of 0.55 ppb) of Hg2+ in water. Low-cost,
linear response over a wide range of concentrations, and high
sensitivity are the prominent features of this sensor that promises
to be a powerful optical method for the detection of Hg2+ in
water.
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